t^2-4t+4=1/4

Simple and best practice solution for t^2-4t+4=1/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t^2-4t+4=1/4 equation:



t^2-4t+4=1/4
We move all terms to the left:
t^2-4t+4-(1/4)=0
We add all the numbers together, and all the variables
t^2-4t+4-(+1/4)=0
We get rid of parentheses
t^2-4t+4-1/4=0
We multiply all the terms by the denominator
t^2*4-4t*4-1+4*4=0
We add all the numbers together, and all the variables
t^2*4-4t*4+15=0
Wy multiply elements
4t^2-16t+15=0
a = 4; b = -16; c = +15;
Δ = b2-4ac
Δ = -162-4·4·15
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4}{2*4}=\frac{12}{8} =1+1/2 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4}{2*4}=\frac{20}{8} =2+1/2 $

See similar equations:

| 3y2+7y-20=0 | | 3y2+-7y+-20=0 | | -18x+3x^2+4=0 | | 6x^2-3=-11x | | 0.2(x+50)-0.08(x-60)=10 | | 6)9-5x=6-6x | | (4/2x+1)+(1/4x2)=3 | | 3+2x4+1=13 | | -2(x+2)-7(x-4)=-5x-x | | 3x/2=5/3+7x/2 | | 11-6n=65 | | X/7=x/6-4 | | 5636944672+78/583769x=589 | | 18x=5x^2 | | 6x^2-3=11x | | t^2-2t+1=1/4 | | 2^x-5^x=20 | | 5r-1=8r+8 | | 46^x=4^21 | | 3^4x+5-1^2x=3 | | (x-1)/4x=2 | | 5t+7=4t–9 | | 12x+8+6=4x+9 | | 7x+10=4+8x | | 7x+10=4x+8x | | 15x+10=4x+8 | | 9x+18=4x+8 | | 4x+18=8x+2 | | 2x²+3x=54 | | 5*(x+44,5)=-5*(2x+0,5) | | -2(x+2)=-8(2x-3) | | -18x^2+24x+41=0 |

Equations solver categories